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ABSTRACT

ON THE STRONG LAW OF LARGE NUMBERS AND
RELATED RESULTS FOR QUASI-STATIONARY SEQUENCES

Under second moment assumptions and weak dependence conditions on a

sequence of random variables tx1), Gapo~kin (1975) has established almost

sure convergence of the ser ies 
~~ ~~ 

X
K 

under certain restrictions on

the rate of convergence to 0 of the constants {c.K
}. Similarly, M6ricz

(1977) has established conditions for the almost sure convergence to 0

of the sequence 
~~ X~K~ 

In the presen t paper , some extensions of these

results are obtained.
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1. Main results and discussion. Consider a sequence of random

variables tx1) satisfying

— 2 _
E11 = 0 , ~~~ = 1

and, for a sequence of constants

IEXjXkI � 
~~~~ all j � k.

Such a sequence . tx1) is called quasi—øtationary with respect to the sequence

The almost sure asymptotic behavior of the sum ~~ x~ may be charac-

terized by an assertion of the form

n
(A) ~ —‘. 0 , n —

~~ , w.p.l ,
i—i

where {A~) is a sequence of positive constants tending to 0. It is of

interest to establish (A) under mild restrictions on the constants {+~}

and {Ai}. A related problem concerns the almost sure behavior of the sum

~~~~~ ~~ 
X1 for such a sequence of constants tX~). In this case the desired

assertion is

(
~
) Z x1 x~ converges w.p.l.i—i

By the veil—known Xr oneck.r hems, (a) implies (A) in the case of non—

increasing.

*145 1970 .ubj.ot oia.sifioation.. Primary 60V99 , Secondary 60G99.

Key word. and phr a... . Quasi—stationary rand om variables ; strong law of large
nu.bers; almost sure convergence of infinite series .
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Rademacher (1922) and Mensov (1923) independently established that

(a) holds if

(1.la) $~~~ 0 , i > O ,

and

(l.lb) ~~~A~~log
2 n < ” .

Kac, Salem and Zygmund (194$ relaxed (l.la) to — O(n4~~) for an € > 0.

Gapo~kin (1975) proved the following much broader result. Put

w(n) — 
~~~~~~~ 

$~

THEOR~~( a (Gapo~1cLn) . If

(1.2) w(n) l~ log~ n <

then (a) hOida .

This theorem allows the possibility of w(n) —‘ ~, whereas the earlier re-

sults are confined to the case w ( )  < ~~~.

Returning to (A) , we have

COROLLARY a. If (1.2) i. aatiafied and is noninoreasi ng, then

CA) hold..

On the other hand, a direct approach — bypassing (a) — offers the

possibility of obtaining (A) under weaker restrictions than (1.2). In this

direction, M6ricz (1977) has obtained the following result.
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THEOR~( A O(dricz). If

(l.3a) w(n) <

(1.3b) w(n) i. noninoreaaing,

and

(1.3c) v(2n)/w(n) ~ q > 1 , all n,

then (A) holds .

Note that (1.3a) relaxes (1.2). However, (l.3c) requires v(n) to

grow at a fast rate. For eTample, (l.3c) is satisfied by v(n) of the

form w(n) ~~~ , but not by V~n) of the form W(n) — exp(2llog n)

For the latter , Theorem A is inapplicable, whereas Theorem a does yield a

conclusion.

The present note provides an alternate to Theorem A which essentially

removes condition (1.3c). As in 15], put W(l) — v(l) and, for a � 2,

define W(n) by

- W~
’U½n] - 1) + w½ (1½n 1)

THE0R~ ( B. If

(l.4a) ~~~~ 
W(n) <

and



— 4 —

(1.46) W(n) A
2 is noninoreaeing ,

then (A) holds .

Conditions (l.3a) and (1.3c) together imply (1.4a), as evident from the

Lemma below. Also, the mild constraints (1.3b) and (1.4b) are mere vari-

ants of each other. Thus Theorem B has somewhat broader application than

Theorem A. In particular, it yields

EXAMPLE. Consider w(n) — exp (2ilog a) . In this case (by the Lemma

below)

W(n ) — 0(w(n) log n)

so that (A) holds if A satisfies (1 4b) for this v(n) and if

(1.5) w(n) A
2 log n < . 0

In the preceding Dv~.ple , the use of Corollary a would be less effective

than Theorem B, since (1.5) is weaker than (1.2). The gain in effectiveness

of Theorem B over Corollary a occurs when w(n) grows sufficiently fast.

L~ IMA . Ci) In general , W (n) — O(w(n) log2 a)

(ii) If w(n) — exp(2/log a) , then W( n) — O(W(n) log a)

(iii) If w(n) satisf ies (l.5c), then W(n) • 0(w(n))

As a compiement to Theorem B, th. following generalization of Theorem a

will ha established .

- _  . . - - ----- - ~~. - ..
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TEEOR~ 1 8. If (1. 4a) and

(1.6a) ~~ V(u) A2(log n)(log log a)~
’
~~ < , for some € > 0,

are satisfied , then (a) holds .

Since (1.2) implies each of (l.4a) and (l.6a), Theorem B generalizes Theorem a.

2. Proofs.

PROOF OF THE L~ IMA . Note that, for 2k ~ n c 2~~
1
,

(2.1) w½(~) < V½(2I
~~ — 1) ~~~~~~~ W½(21)

Thus W½(n) � ~~½
(a) • 0(w½(n) log a) , which gives (1) . Now, for j  � k ,

j - kexpfj • expiic exp

� expv’~

_ e x ~~½v’~~(ex P — ~~
)

Thus by (2.1) we obtain, for the case w(n) — exp(2/log n), that

� (exp ½”~ 
exp & 

� 2~c exp1I~
ex~ft~~~- .1

i.e., W½ (fl) — Q(/log nv ½ (n)), so that (ii) is proved. Finally, for w (n)

satisfying (1.3c) the use of (2.1) yields
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� w½(2k) ~~ ~
1j

½(k-J )

from which (iii) follows . 0

In proving Theorems B and B, the following maximal inequality will

be used .

LEMMA 2.1. F o r m � l, n � l ,

E{maxl�k� {~~~~fl 
ai j2} � 2W (n) 

~~~nt4l 
a1

This was proved by Móricz (1976), extending an earlier result of Serf hug

(1970a). For Theorem B, we will also need the following easily proved parallel

result t5], ~83.

L~ IMA 2.2. For n � 1,

E{ {~~~~ ÷l 
a 

~ 
x1} 2} � 2w(n) 

~7~~+l a

PROOF OF THEOR~ 1 B. In order to show (A), it is equivalent to show

that for every € > 0,

(2 .2) P{IA~ Sa l > c infinitely often) — 0.

Now observe that the nonincreasingness of A2 W(n) , combined with the non—

decreasingnees of W(n) , implie, that ~ is nondecreasing. Thus, by the

Borel—Cantelhi. lemma, (2.2) hold, if

_ _ _ _ _  _ _  _ _
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(2.3) ~ PtA k max k k+1 1
~n’ >

k 0  2 2 ~n<2

Now

P {A
k ~~~2

k~~<2k+h 
I S I  > e}

€ A~~ E{maX k k+l s }

� 2€~~ A 2 E{S2 + max 
k ~~1(S — S 

~~~~2 2 2 �n<2 2

A two—fold application of Lemma 2.1 gives

P tA k max k k+l I S I  > e} � 4A 2
k w(2 )2

2 2 �n< 2 2

Thus the sum in (2.3) is bounded by 4 
~~ 

2k A 2
k W(2 k) , which in turn

in view of (l.3b) is clearly bounded by 4 ~~ A 2 W(n) . By (l.3a), the

required (2.3) thus holds. 0

PROOF OF THEOREM B. Following the approach of 11], and using a standard

elementary argument, we first establish that T k 
converges w.p.1 to a limit

2
T , , by showing that

(2.4) 
~~~O 

11 ¼t 1 <

where — S~~~~ — S k and 
~~k ’ 

denotes (E A~)½ 
. By the Cauchy-

Schwarz inequality,

_ _ _ _



— 8 —

Z I I ~~II [
~ 

d~I IA kII 21[~ dk
_2)

f or positive constants d.K. Choose d
k 

— k½ (log ~~~~~~~~ e > o. Then,

applying Lemma 2.2 and (l.6a), we obtain for an appropriate constant C,

~ ~k
1 I � C ~ k(log k)~~~ 12v(2

k
) ~~~~~ A~ ]

j—2 +1

� 2C r 1 (log n) (log log n) 1’~~ v(n) A2 <

Next we establish that T converges w.p.l to T~, , by showing that

max k k+l IT~ 
- T k t ‘

~~~+ 0 w.p.l.
2 �n<2 2

This follows, by an argument similar to the proof of Theorem B, if

~~~ 
E{max k ~~~~~~~ 

(T - T k)2} 
<

which in turn is established by Lemma 2.2 and (h.4a), via

k+l
2 ~ w 2 k) 

2 
~~2 ~ Z W(n) A 2 

< . 0
k—0 k n n—i a

n 2

_  _ _  - - - - . .
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